RS-232 Stop Bits in Agilent Instruments

Turns out Agilent instruments do not use the same defaults for the RS-232 in their instruments.

54600 series uses 1 stop bits (most common):

RS-232 modules used in old 54600 series
54620/54640 series (newer 54600 series)

However other bench instruments such as power supplies (E3640 series 663X series) and 33120A arbitrary waveform generator uses 2 stop bits (fixed regardless of parity), which is usually NOT THE DEFAULT for most terminal clients:

E3640 series and 33120A’s RS-232 configuration.
Parity only trade away one data bit, so it does not affect stop bit
663X series powers supplies’ programming manual aren’t explicit about that except in code example

Loading

InfiniiMax AutoProbe 1 Caveats

For most mortal souls probing up to 12Ghz, Agilent’s integrated active probe system is called the the AutoProbe 1, which looks like this:

Regular full blown Windows-based Infiniium oscilloscopes takes any AutoProbe 1 probes (as long as the shape fits), but I noticed my DSO6104A (InfiniiVision 6000A series) do not take my 1152A (2.5Ghz) probes nor my fancy 1168A (10Ghz) and 1169A (12Ghz) probes.

Turns out the more compact, embedded (VxWorks) Agilent scopes that boots almost immediately. It’s called the InfiniiVision Series, which covers 1000 X-, 2000 X-, 3000A/T X-, 4000 X-, 6000 X-, 5000, 6000, and 7000 Series.

I’m not rich enough to get my hands on the X series, but I know from the architecture that 5000, 6000 and 7000 series are basically the same scope. 5000 and 6000 series looks almost identical while the 7000 series adds a giant screen and a slightly different keypad layout (the BNC ports do not align with the channel buttons and dials).

Turns out the datasheets shows two caveats:

  • 100Mhz model uses different hardware. They don’t take Autoprobe interface as there’s absolutely no reason why you need an active probe to get 100Mhz single ended. Agilent skipped the hardware for it (thus the autoprobe pins) altogether although they kept the recessed space reserved for Autoprobe so they don’t have to mold a different front bezel just for the 100Mhz models.
  • They basically take only Generation I AutoProbe I, namely the 1130 series
  • Gen 0 (not an official name) AutoProbe 1 does not work: 1152A (2.5Ghz single ended) for 54845A. These differential probes: 1153A, 1154A, 1155A, 1159A are also considered too old. They were intended to work with old Infiniiums such as 54845A
  • Gen 2 AutoProbe 1 (only 10Ghz 1168A/B and 12Ghz 1169A/B models) does not work. These embedded scopes usually max out at 1.5Ghz, with the exception that 6000X goes up to 6Ghz, which is still way below 10Ghz
  • N2800 series are Autoprobe I, but it’s Gen III (has a bigger butt extending away from the AutoProbe I hole), so it doesn’t work
  • The rest are Autoprobe II and III that’s beyond our mortal souls (and way out of the league of InfiniiVision scopes)
https://www.keysight.com/us/en/assets/7018-06782/data-sheets/5968-7141.pdf

Loading

E5070B / E5071B shutting itself down immediately after turning on

Got a second customer coming in today with a E507XB series network analyzer that does not turn on. Looks like it’s a common problem within the model series.

If the unit turns on without the CMOS battery but it doesn’t turn on the 2nd time after the CMOS was cleared, you have a very expensive problem which likely I’m the only person who can solve it because it’s months of effort tracing the circuit and the timings inside. I regretted chasing down the rabbit hole and spent more labor than 3 good unit’s costs for the few grands I’ve charged, but I might be able to recoup the labor in the future as more of the E507XB fails the same way.

UNLESS it’s a SC815E (there are 2 revisions that uses different motherboard), it’s NOT the motherboard or the power supply. I’ve seen some faulty SC815E doing the same on other model series, but not the VP22s (I replaced 4~5 different VP22s, they all do the same thing). It’s some good timing issues that’s hard to pinpoint to a specific module (you can replace everything on the digital side and it still doesn’t work) which I had to design, build and test a special circuit to correct it.

If you have a unit E5060 series or E5070 series VNA (Vector Network Analyzer) that doesn’t boot, I’m likely to have the exact experience fixing it. Of course I’m open to solving other problems with the analyzer as well. I offer free eval (no fix, no fee). Please email me at owner@humgar.com or call me at 949-682-8145.

Loading

HP 54502A Datasheet typo about AC coupling

The cutoff frequency of 10Hz on the datasheet is a typo. Better scopes at the time claims 90Hz. 10Hz is just too good to be true.

Found the specs from the service manual:

Don’t be fooled by the -3dB cutoff and ignore how wide the transition band can be (depends on the filter type and the order). Turns out this model has a very primitive filter that AC couple mode still messes square waves below 3kHz up despite the specs says the -3dB is at 90Hz. You better have a 30+ fold guard band for old scopes!

Remember square wave pulse train in time domain is basically a sinc pulse centered at every impulse of the impulse train in frequency domain superimposed. Unless you have a tiny duty cycle (which is not the case for uniform square waves, they are 50%), the left hand side of the sinc function at 1kHz fundamental still have sub-1kHz components that can be truncated by the AC coupling (high pass filter).

Loading

HP 54003-61617 Probe = HP 10017A

I have a 54003-61617 probe lying around and I never got a chance to find out what bandwidth so I rarely used it. After some digging, thanks to searchable PDFs, I found on 1986-04 edition of HP Journal (Archived copy here) that 54003-61617 probe is equivalent to 10017A:

By the way I noticed HP Labs still had the old HP Journal PDF files hosted on the website except without indexing: https://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/YYYY-MM.pdf, replace YYYY with year and MM with month.

HP Journal (hparchive.com has an excellent collection) is an excellent source of hard-core electronic engineering education materials, better than anything you can get in colleges because electronic circuit design (not IC designs) is not an academic research area anymore. As of 2000, the only way to get into this area is to work at companies (apprenticeships) instead of formal training like classes. There’s a little problem though because this specialty (analog electronics) is so disorganized, very often even veterans in analog electronics has blind spots like not taking advantage of math tools/thinking enough (they tend to be very good at back-of-envelope calculations).

Finding the specs for 10400A series (10017A) is not easy either because the datasheet is not on Keysight (the new name for HP’s instrument division). It’s listed in an 1998 catalog “How to Select A Probe” kindly hosted by Marc Mislanghe (who passed away in 2014) as HPMemoryProject.org that listed the specs of 10017A in attempt to find an approximate ‘modern’ substitute:

HP 10017A (54003-61617) mini-probe has the following specs:

  • Attenuation: 10:1
  • Input Capacitance: 8pF
  • Input Resistance: 1MOhm
  • Bandwidth: 300Mhz
  • Compensation range: 9~14pF
  • Takes up to 300V
  • 1 meter long cable

Even older record, Operating Note Part No. 5955-6270 courtesy of HParchive.com shows:

I bought a bunch of snap-on ground lead alligator clips (MP2+MP3) and grabbers (MP7) for the probe

Figure 2. 100XXA probe with hook tip or grabber

The snap-on alligator ground clip actually has two parts: the alligator clip (MP2, 5061-1258) and the snap-on ground lead (MP3, 10006-61301) and they are screw-mated :

I happened to have bought a pack of multiple new ground leads and grabbers (MP7, 10017-69501) for this model series, more than what I’d need. They’ll fit miniature probes models 10017A, 10018A, 10040A, 10041A, 10042A.

These accessories will also fit 10021A, 10022A, 10026A, (10027A?), 10032A, 10033A as well.

Loading