Shortest Explanation to NAND SR-flip-flop

When I was in high school studying electronics on my own as a hobby (it was not taught in the curriculum. No, physics people culturally hates electronics, they consider it a chore.), I followed the logic states of the bistable (two NAND gates) meticulously. However, it was tedious and hard to remember correctly.

There’s a fast way to reconstruct the explanation from scratch. You’ll need these invariants:

  • ‘1’ is ‘let the other input decide’ in AND logic (1 & A = A)
  • ‘0’ is ‘action‘ in AND logic, namely clear (0 & A = 0)
  • NAND is practically a NOT gate if you tie the inputs together
  • Two NOT gates chasing each other generates Q’ and Q
  • NAND gates provides a mean for external inputs to disturb the chasing NOT gates

By leaving external inputs (S and R) at ‘1’, we are letting the state pins decide, behaving like the two chasing NOT gates.

The only way to disturb the state is to create a ‘0’ (clear) action. The circuit is symmetric, so ‘S’ and ‘R’ is arbitrary as long as you are willing to switch the roles of Q and Q’.

  • Set Q to ‘0’ by sending a ‘0’ (clear action) through ‘S’
  • Set Q’ to ‘0’ by sending a ‘0’ (clear action) through ‘R’

There are no other valid actions in this configuration.

Side note: persisting the clear action will lead to 0 & 0 = 0 at the applied input and 1 & 1 = 1 at opposite NAND gate, which the achieved state remains. Normally we want to return the external inputs back to 1 to receive future commands (actions) correctly, both external inputs asserting low is invalid.

It’s more natural to have S and R being active high in transistor’s implementation. NAND’s ‘S’ and ‘R’ are active low (so technically, I should use S’ and R’ instead, but I’m following the more common nomenclature for the moment for the NAND gate implementation).

 90 total views

Stanford SRS PS350 High Voltage Power Supply Repair

I received two PS350 power supply units that one of it has sparks when output is enabled and the other just won’t output anything at all.

The only repair info I found is from one of my favorite youtube channel the Signal Path. However, his unit has a much easier problem: the solder joints cracked because PS350 uses the metal case as a shield that are subjected to mechanical stress.

However, after difficult troubleshooting, I realized one unit has a fried resistor in the HV section, and a few core MOSFETs shorted.

The other unit is much more difficult: not only the HV capacitor is blown, resistor is blown, diodes shorted (won’t be able to detect it by probing in-circuit because of the capacitor ladder), PCB trace to the feedback path vaporized (without that the voltage will rise uncontrollably until something’s fried), and a bunch of MOSFETs, transistors and regulators ICs needs to be replaced.

Likely both units are broken because the users switched polarity without turning the HV section off (and let the voltage bleed out). This is very important and the markings on the case already warned the user NOT to do so.

You absolutely must NOT change the polarity while the output is live because the components in the HV section are marked for 4~6kV, so there is little room for a voltage spike past the operating voltages. The act of switching out the polarity (by mechanically swapping the pins through the dial switch at the back) doubles the voltage stored in the capacitors in a voltage multiplier ladder, so you are almost sure to crack the HV capacitors and likely the HV diodes.

Since I’ve developed experience for repairing SRS PS350, since I had to reverse engineer some of the circuit sections, I welcome request for repair evaluation (no fix, no fee). Please call me at 949-682-8145, or meet me at

 176 total views