MATLAB Compatibility: nominal() and ordinal() objects since R2013a are not compatible with R2012b and before

In the old days (before R2013a), nominal() and ordinal() were separate parallel classes with astoundingly similar structures. That means there’s a lot of copy-paste-mod going on. TMW improved on it by consolidating the ideas into a new categorical() class, which nominal() and ordinal() derives from it.

The documentation mentioned that nominal() and ordinal() might be deprecated in the future, but I contacted their support urging them not to. It’s not for compatibility reasons: nominal() and ordinal() captures the common use cases that these two ideas do not need to be unified, and the names themselves clearly encodes the intention.

If the user want to exploit the commonalities between the two, either it’s already taken care of by the parent’s public methods, or the object can be sliced to make it happen. I looked into the source code for nominal() and ordinal(): it’s pretty much a wrapper over categorical’s methods yet the interface (input arguments) are much simpler and intuitive because we don’t have to consider all the more general cases.

Back to the titled topic. Because categorical()’s properties (members) are different from pre R2013a’s nominal() and ordinal() objects, the objects created in R2012b or before cannot be loaded correctly in newer versions. That means the backward compatibility is completely broken for nominal()/ordinal() as far as saved objects are concerned.

There’s no good incentive to solve this problem on the TMWs side because the old nominal()/ordinal() is short-lived and they always want everybody to upgrade. Since I use nominal() most of the time and the ones that really need to be saved are all nominal(), I recommend the converting (‘casting’) them to cellstr by

>> A = nominal({'a','a','b','c'});
>> A = cellstr(A)
A = 
    'a'    'a'    'b'    'c'

Remember, nominal() is pretty much compressing a ton of cellstr into a few unique items and mapping the indices. No information is lost going back and forth between cellstr() and nominal(). It’s just a little extra computations for the conversion.

As for ordinal(), I rarely need to save it because order/level assignment is almost the very last thing in the processing chain because it changes so frequently (e.g. how would you draw the lines for six levels of fatness?), I might as well just not save it and reprocess the last step (where the code with ordinal() sits) when I need it.

Nonetheless, if you still want to save ordinals() instead of re-crunching it, this time you’ll want to save it as numerical levels by casting the ordinal() into double():

>> A = ordinal([1 2 3; 3 2 1; 2 1 3],{'low' 'medium' 'high'}, [3 1 2])
A = 
     medium      high        low    
     low         high        medium 
     high        medium      low    
>> D = double(A)
D =
     2     3     1
     1     3     2
     3     2     1
>> U = unique(A)
U = 
>> L = cellstr(U)
L = 
>> I = double(U)
I =
>> A_reconstructed = ordinal(D, L, I)
A_reconstructed = 
     medium      high        low    
     low         high        medium 
     high        medium      low

You’ll save (D, L, I) from old MATLAB and load it and reconstruct it with the triplets from the new MATLAB (I’d suggest using structs to keep track of the triplets). I know it’s a hairy mess!


 1,047 total views

MATLAB Gotchas: Adding whitespace in strcat()

strcat() is a very handy function in MATLAB that allows you to combine strings using a mixture of cellstr() and char strings and it will auto-expand the char strings to match the cellstr() if necessary.

However, by design intention, strcat() removes trailing white spaces by internally applying deblank() to all char string inputs. It does NOT deblank cellstr() inputs. So if you want to combine date and time with a space, you have to use {‘ ‘} instead of ‘ ‘:

date = '2000-01-01';
time = '00:00:01';
>> strcat(date, ' ', time)  % The ' ' is ignored
ans =
>> strcat(date, {' '}, time)  % The ' ' is ignored
ans = 
    '2000-01-01 00:00:01'

I find this more confusing than helpful. Including myself and other users, we naturally resort to processing line by line using cellfun() or other tricks just to get around the deblank() problem without taking a second look at the documentation because

  • rolling our own implementation is marginally as annoying as the deblank()
  • we expect cellstr() to match the dimensions without auto-expanding. I naturally thought it would expand only if it’s a char string.

Well, somebody asked this question on the newsgroup before, so obviously it’s not an intuitive design. It make sense to do it the way MATLAB designed strcat() because we need some way to tell MATLAB whether I want my inputs deblanked or not.

I think it’s more intuitive to have MATLAB’s default strcat() not to deblank() char strings at all and have a strcat_deblanked() that deblanks the inputs before feeding into strcat().

Unfortunately this behavior is there for a long time, so it’s too late to change it without affecting compatibility. Might as well live with it, but this is one of the very few unnatural (or slightly illogical design choice) of MATLAB to keep in mind.

 2,613 total views

MATLAB Features: Persistent Excel ActiveX (DCOM) for xlsread() and xlswrite() R2015b

xlsread() and everything that calls it, such as readtable(), is terribly slow, especially when you have a boatload of Excel files to process. The reason behind it is that xlsread() closes that DCOM handle (which closes the Excel COM session) after it finishes, and restart Excel (DCOM) again when you call xlsread() again to load another spreadsheet file.

That means there’s a lot of opening and closing of the Excel application if you process multiple spreadsheets. The better strategy, which is covered extensively in MATLAB’s File Exchange (FEX), is to have your program open one Excel handle, and process all the spreadsheets within the same DCOM handle before closing it.

This strategy is quite overwhelming for a beginner, and even if you use FEX entries, you still cannot get around the fact that you have to know there’s a handle that manages the Excel session and remember to close it after you are done with it. Nothing beats having xlsread() do it automatically for you.

Starting with R2015b, the Excel DCOM handle called by xlsread() is now persistent: that after you make the first call to xlsread(), Excel.exe will stay in the memory unless you explicitly clear persistent variables or exit MATLAB, so you can reuse them every time xlsread() or xlswrite() is called. Finally!

The code itself is pretty slick. You can find it in ‘’. Well, I guess it’s not hard to come up with it, but I guess in TMW, they must have a heated debate about whether it’s a good idea to keep Excel around (taking up resources) when you are done with it. With the computation power required to run R2015b, an extra Excel.exe lying around should be insignificant. Good call!


 2,159 total views

MATLAB Techniques: Who’s your daddy? Ask dbstack(). Unusual uses of dbstack()

Normally having your function know about its caller (other than through the arguments we pass onto the stack) is usually a very bad idea in program organization, because it introduces unnecessary coupling and hinders visibility.

Nonetheless, debugger is a built-in feature of MATLAB and it provides dbstack() so you have access to your call stack as part of your program. Normally, I couldn’t come up with legitimate uses of it outside debugging.

One day, I was trying to write a wrapper function that does the idiom (mentioned in my earlier blog post)

fileparts( mfilename('fullpath') );

because I want the code to be self-documenting. Let’s call the function mfilepath(). Turns out it’s a difficult problem because mfilename(‘fullpath’) reports the path of the current function executing it. In the case of a wrapper, it’s the path of the wrapper function, not its caller that you are hoping to extract its path from.

In other words, if you write a wrapper function, it’s the second layer of the stack that you are interested in. So it can be done with dbstack():

function p = mfullpath()
  ST = dbstack('completenames');
    p = ST(2).file;
    p = '';

Since exception handling is tightly knit into MATLAB (unlike C++, which you pay for the extra overhead), there aren’t much performance penalty to use a try…catch() block than if I checked if ST actually have a second layer (i.e. has a non-base caller). I can confidently do that because there is only one way for this ST(2).file access operation to fail: mfullpath() is called from the base workspace.

Speaking of catchy titles, I wonder why Loren Shure, a self-proclaimed lover of puns and the blogger of the Art of MATLAB, haven’t exploited the built-in functions ‘who’ and ‘whos’ in her April Fools jokes like

whos your daddy
who let the dogs out

Note that these are legitimate MATLAB syntax that won’t throw you an exception. Unless you have ‘your’, ‘daddy’, ‘let’, ‘the’, ‘dogs’, ‘out’ as variable names, the above will quietly show nothing. It’d be hilarious if they pass that as an easter egg in the official MATLAB. They already have ‘why’,

why not

Error using rng (line 125)
First input must be a nonnegative integer seed less than 2^32, 'shuffle', 'default', or generator settings captured previously using S = RNG.

Error in why (line 10)
 dflt = rng(n,'v5uniform');




 1,290 total views

MATLAB Quirks: struct with no fields are not empty

As far as struct() is concerned, I’m more inclined to using Struct of Array (SoA) over Array of Structs (AoS), unless all the use cases screams for SoA. Performance and memory overhead are the obvious reasons, but the true motivation for me to use SoA is that I’m thinking in terms of table-oriented programming (which I’ll discuss in later posts. See table() objects.): each field of a struct is a column in a table (heterogeneous array).

Since a table() is considered empty (by isempty()) if it has EITHER 0 rows INCLUSIVE OR 0 columns (no fields) and the default constructor creates a 0 \times 0 table, I thought struct() would do the same. NOT TRUE!

First of all, the default constructor of struct() gives ONE struct with NO FIELDS (so it’s supposed to correspond to a 1 \times 0 table). What’s even harder to remember is that struct2table(struct()) gives a 0 \times 0 table.

The second thing I missed is that a struct() with NO fields is NOT empty. You can have 3 structs with NO fields! So isempty(struct()) is always false!

I usually run into this problem when I want to seed the execution with an empty struct() and have the loop expand the fields if the file has contents in it, and I’ll check if the seeded struct was untouched to see if I can read data from the file. Next time I will remember to call struct([]) instead of struct(). What a trap!

At the end of the day, while struct is powerful, but I rarely find AoS necessary to do what I wanted once table() is out. AoS has pretty much the same restrictions as in table() that you cannot put different types in the same field across the AoS, but table allows you to index with variables (struct’s field) or rows (struct array index) without changing the data structure (AoS <-> SoA). So unless it’s a performance critical piece of the code, I’ll stick with tables() for most of my struct() needs.


 4,584 total views,  1 views today

MATLAB Techniques: onCleanup() ‘destructor’

If your program opens a file, creates a timer(), or whatever resources that needs to be closed when they are no longer needed, before R2008a, you have to put your close resource calls at two places: one at the end of successful execution, the other at the exception handling in try…catch block:

FID = fopen('a.txt')
   // ... do something here

Not only it’s messy that you have to duplicate your code, it’s also error prone when you add code in between. If your true intention is to close the resource whenever you exit the current program scope, there’s a better way for you: onCleanup() object. The code above can be simplified as:

FID = fopen('a.txt')
obj = onCleanup(@() fclose(FID));
// ... do something with FID here

The way onCleanup() works is that it creates an object which you define what its destructor (delete()) does on creation (by the constructor of course) by specifying a function handle. This way when ‘obj’ is cleared (either as it goes out of scope or your explicitly cleared it with ‘clear’), the destructor in ‘obj’ will be activated and do the cleanup actions you specified.

Due to copyright reasons, I won’t copy the simple code here. Just open onCleanup.m in MATLAB editor and you’ll see it that the code (excluding comments) has less words than the description above. Pretty neat!

Normally we use onCleanup() inside a function. The best place to put is is right after you opened a resource because anything in between can go wrong (i.e. might throw exceptions): you want ‘obj’ to be swept (i.e. its destructors called) when that happens.

Technically, you can make an onCleanup() object in the base (root) workspace (aka command window). The destructor will be triggered either when you clear the ‘obj’ explicitly using ‘clear’ or when you exit MATLAB. You can see for yourself with this:

obj = onCleanup(@() pause);

It kind of let you do a one-off cleanup on exit instead of a recurring cleanup in finish.m.

So the next time you open a resource that needs to be closed whether the program exits unexpectedly or not, use onCleanup()! It’s one of the elegant, smart uses of OOP.


 2,041 total views

MATLAB Techniques: Self-identifying (by type) methods

We all know MATLAB by default fill numbers with 0 if we haven’t specified them (such as expanding a matrix by injecting values beyond the original matrix size). Cells are default filled with {[]} even if you meant to have cellstr()  {''} across the board. Sometimes it’s not what we wanted. 0 can be legitimate value, so we want NaN to denote undefined values. Same as cellstr(), we don’t want to choke the default string processing programs because one stupid {[]} turns the entire cell array into to a non-cellstr array.

For compatibility reasons (and it’s also hard to do so), it’s not a good idea to simply modify the factory behavior. I have something similar to table() objects that requires similar expansion on arbitrary data types, but MATLAB’s defaults proves to be clumsy.

Instead of writing switch-case statements or a bunch of if statements that relies on type information like this:

function x = makeUndefined(x)
  switch class(x)
    case {'double', 'single'}
      x = NaN(size(x));
    case 'cell'
      if( iscellstr(x) )
        x = repmat({''}, size(x));
    % ...

I found a slick way to do it so I don’t have to keep track of it again if I need the same defaults in other places: take advantage of the fact that MATLAB selectively will load the right method depending on the first input argument(s)*:

Create a commonly named method (e.g. makeUndefined()) for the PODs and put it under the POD’s @folder (e.g. /@double/makeUndefined.m, /@cell/makeUndefined.m). The functions look something like this:

function y = makeUndefined(x)
% This function must be put under /@double
  y = NaN(size(x));
function x = makeUndefined(x)
% This function must be put under /@cell
  if( iscellstr(x) )
    x = repmat({''}, size(x));

Similarly, you can make your isundefined() implementation for @double, @cell, etc, just like the factory-shipped @categorical/isundefined() corresponding to the same rules you set for makeUndefined().

Actually, the switch-case approach is analogous to the common abuses of RTTI in C++: every time a new type is added, you have to open all the methods that depends on the type info and update them, instead of having the classes implement those methods (with proper object hierarchy and overloading).

[Scott Meyers, “Effective C++”] Anytime you find yourself writing code of the form “if the object is of type T1, then do something, but if it’s of type T2, then do something else,” slap yourself

MATLAB does not have proper polymorphism, but can call the right method based on the first argument (or the latter ones if they have a proper dominance relationship: mind you that most PODs don’t), but this approach is as close as it can get to proper OO design despite we are just talking about PODs here.

This technique is especially valuable when you and TMW (or other users) have different ideas of what an English word (e.g. empty, defined, numeric) means. Like do you consider boolean (logical) numeric? TMW says no through isnumeric().

To give you an example, I made a tool to nicely plot arbitrary features in my @table over time (the equivalent of @timetable before TMW introduced it). It only make sense if the associated dependent variable (y-axis) can be quantified, so what I meant is broader than isnumeric(): it’s isConvertibleToDouble() since I casted my dependent variables with double() in between.

Boolean (logical) and categorical variables have quantifiable levels, so double() can be applied to them, they should return TRUE for isConvertibleToDouble() despite isnumeric() returns FALSE. They have the same behavior for basic types like double(), single(), char(), cellstr(), struct(), etc.

In summary,

  1. You say what you really mean (by introducing nomenclature), NOT what it typically does
    – this is like creating another indirection like half(x) instead of directly writing x/2 or x>>1.
    – spend 90% of your time coming up with a very intuitive yet precise name. ‘Misspoke’ == Bug!
  2. The new data types self-manage through implementing methods used by your code.
    – assume nothing about input type other than the interfaces that are accessed through
    (the traditional approach knows exactly what inputs they’re going to see)
    – if you did #1 correctly, there’s no reason to foresee/prepare-for new input types
    (just implement the methods for the input data types that you want it to run for now)
    – no sweep (switch-otherwise) case to mishandle** unexpected new input data types
    (because it won’t run on an input data type until all called methods are implemented)
    – introducing new input data types won’t break the core code for existing types.
    (new input data types can only break themselves if they implemented the methods wrong)


* This is tricky business. MATLAB doesn’t have polymorphism, but will look into the FIRST dominant input argument and load the appropriate classes. Usually it’s the first argument, but for non-POD classes, you can specify the dominance relationship (Inferior classes). Actually little has been said about such relationship in PODs in the official documentation.

I called support and found that there’s no dominance relationship in PODs, so it’s pretty much the first argument. That means this trick does not work if you want to overload bsxfun() for say, nominal() objects (which doesn’t have a bsxfun() implementation) keeping the same input argument order because the first argument is a function handle for both the factory and the user method. Bummer!

This is why the new ‘*_fun‘ functions I write, I always put the object to operate on as the first argument whenever possible. Gets a little bit ugly when I want to support multiple inputs like cellfun(), so I have to weight whether it’s worth the confusion for the overloading capability.

** Unless you want to torture yourself by listing all recognized types and make sure the ‘switch-otherwise‘ case fails.

 1,428 total views

MATLAB Techniques: Resuming loops in a script

If you have a time-consuming for-loop in a script and you want to terminate it for some reason (like checking partial results, debugging, etc) but you don’t want to start over again. What would you do if you want minimal typing each time you stop?

Here’s how I do it:

if( exist('k', 'var') ) k0=k; else k0=1; end
for k=k0:1000
  % Your code here

If you want to restart the loop, simply enter k=1 in the command prompt and you’re good to go. Otherwise it will pick up where you left off.

 1,057 total views

MATLAB Fundamentals: Vectorization

A coworker whose background is in embedded systems (with a C background and no MATLAB at all), after hearing my rants that people are coding MATLAB like C using way more for-loops than necessary, asked me if he has two vectors,

a = 0:32767;
b = 0:32767;

and he want all combinations of the elements in a and b so that for each index pair (i, j), he will get

    \[ 167\left(\frac{a_j+42}{b_j+17} \right)\]

There are 32768^2 combinations out there. At first, I showed him the typical method shown in the MATLAB’s introduction materials:

% Should have used ndgrid() for a more natural (column first) layout
[B, A] = meshgrid(a, b);

C = 167*(A+42)./(B+17)

Then he asked, ‘This way I have to store the matrices A and B. Wouldn’t it be memory intensive? Is there a better way to do it like with functional programming?’ Now I have to show him a more advanced trick that requires some mental leaps (the ones necessary to get sophisticated at the MATLAB language):

C = 167*bsxfun(@rdivide, a'+42, b+17)

This one liner does not save intermediate input values, so it’s memory efficient as well.

bsxfun() is a function that takes two inputs (we call it a binary function) which any of them can be a matrix, vector or scalar. It will conceptually expand the dimensions so the function handle (e.g. @rdivide) get to apply to all combinations as if the inputs are expanded (repeated) to the longer of each dimension supplied. I bet under the hood it’s just a pair of for-loops with the loop increments managed so it doesn’t waste memory storing the intermediaries.

In the example above, I have a column a^T+42 and a row b+17. The output C is arranged as if a^T+42 is copied right to meet the length of b+17, and b+17 is copied down to meet the length of a^T+42.

This involves two major concepts one needs to program the MATLAB way : vectorization and anonymous functions. Not something you’d tell a day-zero beginner (probably scare them off), but showing them a Ninja trick after they understand the beginner’s method might motivate them to learn the true power of MATLAB.

Rik has pointed out in the comments below that TMW introduced implicit expansion that makes the bsxfun() obsolete. This is an excellent move (readability), despite it won’t police matrix crimes anymore so educators should teach about implicit expansion as the first thing as it’d be hard to debug is the user is not aware of the behavior. Thanks Rik!

 1,284 total views

Structuring your MATLAB code base

When your MATLAB project gets large, or when you have a lot of projects, it’s time to consider restructuring your code and libraries so you can focus on what matters the most instead of plowing through the mess you just created.

For my projects, I usually create a file called ‘managedPathAndFiles_{myProjectName}.m’ at the top-level folder. The comments in the demo code below highlight the techniques used:

function [file, folder] = managedPathAndFile_myProject(isRegenerated)
% isRegenerated: set to 'false' to skip addpath() (which is slow)

 % Optional default input arguments by name instead of couting nargin
 if( ~exist('isRegenerated', 'var') )
   isRegenerated = true;

 % Note the use of nested structures (like replacing _ with .)
 % You can use the hierarchy to group folders/files in a way you can 
 % operate on them in one-shot

 % Use the location of this file as anchor 
 % 'pwd' is unreliable because you can call this from other folders if
 % it's in MATLAB's path
 folder.root = fileparts( mfilename('fullpath') );
 % Include your project specific subroutines in the MATLAB path
 % Use fullfile() to generate platform independent folder structures
 folder.core.root = fullfile(folder.root, 'core');
 folder.core.helper = fullfile(folder.core.root, 'helper'); 
 % Add all the paths under the folder in one shot
 if( isRegenerated )
   % '-end' avoids name conflict by yielding to the incumbent paths 
   addpath( genpath(folder.core.root), '-end' );
 % Automatically create data storage folder = fullfile(folder.root, 'data'); = fullfile(, 'data');
 if( isRegenerated )
   % Outputting something will absorb the error if the path alreayd
   % exist. I made a mkdir_silent() in my libraries, but used the
   % native call here for demo.
   [~, ~] = structfun(@mkdir,;
 % Sometimes you might have config or external files to load = fullfile(, 'statistics.mat');

Many people don’t know about the function genpath() so they ended up lumping all their dependencies in one folder which makes my eyes bleed. Organize your files into a tree that makes sense now!

I’d recommend any serious MATLAB developer build their own library folder with a consistent naming and a sensible tree hierarchy. After looking into FEX and what’s natively available in MATLAB and you still need to roll out your own code, you’re likely to rediscover what you’ve already built just by establishing a new .m file/function you are about to write in the folder you’d most naturally put it in (like people with like mind: self, tend to pick the same names).

Sometimes you have to whip up some ‘crappy’ code that doesn’t generalize (or can be reused) in other contexts. Consider putting them in a /private folder under the caller so it won’t be visible to everybody else. Of course, I encourage people spend a little more time to write the code properly so it can be put in your own MATLAB library.

 1,722 total views,  1 views today