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ABSTRACT

While I was in college, I realized that the Maths and Physics
curriculum in Hongkong presents HKCEE/HKALE materi-
als in an inefficient manner. Through this short article, I
share my EE toolbox in mathematics and electronics to fel-
low inquisitive or fustrated students.

This article serves as an extension to secondary school cur-
riculum, plus an alternative introduction to electrical cir-
cuits. With the help of these new perspectives, I hope stu-
dents will find the topics easier than expected. I plan to be
brief to save readers’ time.

1. SYMBOLS

1.1. Mathematical Symbols

R The real line
C The complex plane
Z The set of integers
A a matrix
ĵ

√
−1

z,w complex variables
θ argument of complex number
ω angular frequency, ω = 2π f
∈ belonging to
∀ for all

a, b ∈ R a, b are real numbers
z ∈ C z is a complex number

n, k ∈ Z n, k are integers
L inductance
C capacitance
X reactance, X ∈ R
S complex power, S ∈ C
Z impedance, Z ∈ C

Ph(Z) phase of Z in a.c. circuits ≡ arg(Z)

2. VECTORS

[Additional Mathematics, Physics (CE/AL)]

1. Learn the unit vector notation:

û =
~u
|~u|

(1)

Unit vectors always have magnitude of 1. |û| ≡ 1.

2. When doing mechanics problem, resolve your vectors
into two perpendicular1 components pointing along x-axis
and y-axis. Since x̂ and ŷ components are NOT related2,
they can be computed seperately and combined (added) in
the final answer.

3. COMPLEX NUMBERS

[Pure Maths, AL-Phyics, Trigonometic Identities]

Prerequisite: Vectors, Co-geom, Trigo, Pyth Thm.

Most of the fruitful tricks in this article requires high pro-
ficiency in complex numbers C. People who underestimate
their familiary with complex numbers will suffer in topics
founded on it.

In this article, it’s my job to convince you that complex
number doesn’t make your life more complicated, given you
need to get the same job done, but to simplify your work.

Due to the imaginary nature of complex numbers, I’ll intro-
duce complex numbers from scratch to make you feel a bit
more comfortable than ‘being told’ by your textbook.

NOTE: for those who have seen complex numbers, you will
notice that I use ĵ instead of i. j is electrical engineers’
notation to avoid confusion with electric current, and adding
a hat is my own notation, which I will explain in the coming
section.

3.1. Introduction

You may skip this section if you are willing to accept the
idea of complex numbers without explanation.

1or ’orthorgonal’ in university language
2a result of orthorgonality: x̂, ŷ component doesn’t affect each other



In the mathematics you’ve been studying till now, you’ve
been assuming real values such as -34, 4.87, π, 0, etc. They
can be drawn on a line3, which is called the real line, R.
However, you cannot find a root when you have to take the
square-root of a negative number in real number.

Mathematicians introduced a symbol ĵ to denote the prob-
lematic case of

√
−1. As we know ĵ, doesn’t fit into the

R, they decided to put ĵ into another dimension4 and call
it imaginary number. Now, we have two types of numbers,
real and imaginary working together. One dimension gives
a line, and two dimensions gives a plane. So, complex num-
bers lives on a plane C, called the Argand plane.

After years of work, mathematicians consolidated C as an
extension to R, i.e. R ⊂ C. Complex numbers enables users
of mathematics to chip in intermediate calculations/steps
that doesn’t have a physical explaination, yet arriving at the
correct answer at the end of the day, with less fuss.

3.2. Definition and Vector Analogy

ĵ2 ≡ −1 (2)

The more common form is ĵ ≡
√
−1.

In this section, I’ll show you that complex numbers are very
analogus to vectors in 2D co-geom. Skip this section if you
accept this fact.

Consider a vector ~z

~z = α~i + β~j (3)

For convenience, we prefer i and j to be unit vectors so we
just have to care about the ‘direction’ when we use them.
α and β will be scaled appropriately to a and b by equation
(1):

~z = aî + b ĵ (4)

To get neat numbers, we assume î to lying x-axis and ĵ lying
on y-axis, and hence they are perpendicular to each other.

Complex number is not officially a vector, so we have to

3You saw that in inequalities
4more formally, domain

remove the top arrow from ~z. We also remove î because we
don’t need a special symbol for real numbers. Keep in mind
that ĵ is now an imaginary number, not a vector yet it works
like a vector. Then we have

z = a + b ĵ (5)

The symbol ĵ have many advantages:
1. Avoid confusion with electrical current i
2. The hat reminds me of the unit vector analogy.
3. It coincides with the vertical vector in cartesian plane.
4. i and j are often used as indicies in summation.

Mind that most complex numbers calculations are done by
treating them as vectors, and drawing them on Argand di-
agram. Once the diagram is drawn, all information can be
extracted from it with much ease.

3.3. Rectangular Representation

You just saw the rectangular form of complex number z:

z = a + b ĵ

a is the real part of z, denoted by Re(z)
b is the imaginary part of z, denoted by Im(z)

It is very important to realize that a, b ∈ R. The only imag-
inary number in z is ĵ. The purpose of a is to scale the real
number 1, and the purpose of b is to scale the imaginary
number ĵ.

Rectangular form is easy to add and subtract, however, it
is tedious to multiply. We have polar form that will make
multiplication as easy as real numbers.

3.4. Polar Representation

Once you put things into a coordinate plane, Pythegora’s
theorem and your basic trigonometry kicks in like 2D co-
geom.

Instead of expressing in terms of a and b, the diagram re-
vealed the possibility to express z in terms of |z| and θ.



|z|: the magintude5 of z
θ: the argument6of z, written as arg(z).

One of the misfortunes of education in Hongkong is that
they keep the Euler number e ≈ 2.71828... from students
until Form 7, depriving their rights to take full advantage of
laws of indicies.

The polar form of z is written as

z = |z|e ĵθ where θ = arg(z) (6)

To convert from rectangular form to polar form, you can
read the magnitude |z| with your knowledge in Pythagora’s
Theorem and the argument arg(z) from the basic trigonom-
etry you learnt in Form 2:

|z| =
√

a2 + b2 (7)

arg(z) = θ = tan−1
(

b
a

)
(8)

De Moivre’s Theorem makes polar coordinates ideal for mul-
tiplication and division of complex numbers. It says:

arg(z1z2) = arg(z1) + arg(z2) (9)

With the introduction of e, the freaky M.I. proof in Pure
Math is now shortened to the kind of algebra doable by a
Form 2 boy:

z = z1z2 =

(
|z1|e ĵ arg(z1)

)(
|z2|e ĵ arg(z2)

)
(10)

= (|z1||z2|)e ĵ[arg(z1)+arg(z2)] = |z|e ĵ arg(z) (11)

From (11), we obtained |z| = |z1||z2| and equation (9).

If possible, do addition and subtraction in rectangular form
and do multiplication and division in polar form.

3.5. Conjugates

The conjugate of z, written as z̄, means flipping the point z
along the real axis (i.e. upside down) in Argand diagram.

In rectangular form, conjugate flips the sign of the imagi-
nary part, Im(z):

z = a + b ĵ ⇔ z̄ = a − b ĵ (12)

In polar form, conjugate flips the sign of the phase angle, or
the argument, arg(z):

z = |z|e ĵθ ⇔ z̄ = |z|e− ĵθ (13)

Roots to an equation always comes in conjugate pairs. e.g.
if 3 + 4 ĵ is a root, 3 − 4 ĵ must be the other root of the equa-
tion. This will save you from repeating similar steps when

solving ODE (good news to Applied Math folks).

Here’s a weak explanation: we knew

(+ ĵ)2 = −1
(− ĵ)2 = −1

but there is no way to tell whether the root to an equation is
on the upper half plane or the lower half plane. By symme-
try, both possibilities are the roots. A very similar situation
to solving a2 = 9: the roots are 3 and −3.

3.6. Euler’s formula

The curriculum in Hongkong also mentions the notation
cis(θ) as a way to write the polar form. However, it is a
result of Euler’s formula in this section.

We’ve discussed how to convert from rectangular form to
polar form. Given polar form, we convert it back to rectan-
gular form using argand diagram and a bit of basic trigonom-
etry:

From the diagram, the converted rectangular form is:

z = |z| cos θ + ĵ|z| sin θ

Grouping terms and equating to polar form,

z = |z|e ĵθ = |z|(cos θ + ĵ sin θ)

Simplifying we get the famous Euler’s formula:

e ĵθ = cos θ + ĵ sin θ (14)

It is very important to notice:

|e ĵθ| ≡
√

cos2θ + sin2θ ≡ 1 (15)

Now you know cis stands7 for cosine+isine.

7i is the official symbol for
√
−1



3.7. Properties of Complex Numbers

After going through rudimentary definitions, here comes the
properties of complex numbers which you need to remem-
ber by heart and use them often as shortcuts:

|z| = zz̄ (16)
|zw| = |z||w|2 (17)

z + w = z̄ + w̄ (18)
zw = z̄ w̄ (19)

Re(z) =
z + z̄

2
(20)

Im(z) =
z − z̄
2 ĵ

(21)

|z + w| ≤ |z| + |w| (22)

Equation (22) is the famous ‘triangle inequality’ in C.

Knowing the hypotenuse |z| is the longest side of the right
angle triangle with legs Re(z) and Im(z),

Im(z) < |z| (23)
Re(z) < |z| (24)

3.8. Miscellaneous

Exam writers love to test your understanding of Argand dia-
gram by asking something like the locus of |z− (a+b ĵ)| = r.
If you keep the length fixed and allow the phase angle to
swril, you get a circle of radius r centered 8 on a + b ĵ.

Note that ĵ serves as a 90° rotator when it’s multiplied to a
complex number. ∀k ∈ Z,

4. TRIGONOMETRIC IDENTITIES

Though not all trigonometric identities can be proved neatly
in complex numbers, there are cases where complex num-
bers can save you from reading mind-numbling geometrical
explanations.

8You already know the 1D version: f (x−δ) means shifting the ‘0’ point
to δ. It’s just an extension to 2D

Euler’s equation (14) showed the complex exponential e ĵθ is
actually a compact package of sines and cosines. using (20)
and (21), we obtain

Re(e ĵθ) = cos θ =
e ĵθ + e− ĵθ

2
(25)

Im(e ĵθ) = sin θ =
e ĵθ − e− ĵθ

2 ĵ
(26)

Example. Proof product to sum formula:

cos
α − β

2
sin
α + β

2
=

1
2

(sinα + sin β) (27)

Proof.
cos
α − β

2
sin
α + β

2

=

(
e ĵ α−β2 +e− ĵ α−β2

2

)(
e ĵ α+β2 +e− ĵ α+β2

2 ĵ

)
= 1

4 ĵ

(
e ĵ 2α

2 − e− ĵ 2α
2 + e ĵ 2β

2 − e− ĵ 2β
2

)
= 1

2

[(
e ĵα−e− ĵα

2 ĵ

)
+

(
e ĵβ−e− ĵβ

2 ĵ

)]
= 1

2 (sinα + sin β)

5. INVERTING MATRICES

[Pure Mathematics]

Gaussian elimination and row echlon form is taught in Pure
Maths. However, old textbooks didn’t exploit the following
simple definition to invert matrices by Gaussian Elimina-
tion:

AA−1 = I (28)

The same way as you solve a system of equations in Pure
Maths, the above equation can solved for A−1 by computing

rref[A|I] = [I|A−1] (29)

and A−1 is the inverted matrix you need.

The following example might convince you that this method
is less painful than the cofactor method in old texts.

Example. Consider inverting a matrix

A =

 1 3 5
7 9 2
4 6 8





Now, let’s compute rref[A|I]: 1 3 5 1 0 0
7 9 2 0 1 0
4 6 8 0 0 1


→

 1 3 5 1 0 0
0 6 2 4 −1 −1
0 12 33 7 −1 0

 1O × 4 − 3O
1O × 7 − 2O

→

 1 0 −1 −1 0 0.5
0 0 −9 1 1 −2
0 3 6 2 0 −0.5

 1O − 2O × 0.5
2O × 2 − 3O

→

 1 0 −1 −1 0 0.5
0 3 0 8

3
2
3 − 11

6
0 0 1 − 1

9 − 1
9 + 2

9

 3O + 2O × 2
3

2O × − 1
9

→

 1 0 0 − 10
9 − 1

9
13
18

0 1 0 8
9

2
9 − 11

18
0 0 1 − 1

9 − 1
9 + 2

9

 1O × 3
2O × 1

3

A−1 =
1
18

 −20 −2 13
16 4 −11
−2 −2 +4



6. ELECTRIC CIRCUITS

[Physics]

Circuit topology is the most common cause for students to
hate circuits. This section attempt to help students to over-
come the hurdle by introducing the electrical engineer’s way
of understanding circuits.

Secondary school physics texts, for simplicity, teach cir-
cuits by giving circuit patterns to students for memorization.
However, it is fatal if students carry this kind of thinking
when they start to deal with real circuits. Please be pre-
pared to rip the prespective in those text and start over here.

NOTE: As there are too many diagrams to draw, I chose not
to develop this section too much before there’s incentive for
publishing. If you’re hopelessly stuck, contact me for paper
and pencil tutoring.

6.1. Philosophy and Practices

1. Electrical engineers always keep in mind that every nam-
ing is arbitrary. However, we must be consistent with what
we defined in the beginning. For example, you can create
a new language that call your male parent ‘mom’ and your

female parent ‘dad’, as long as you use them consistently.
This kind of vision is also useful in spotting symmetry and
thus saving us tons of work.

2. Also, we treat everything with reference (respect or rel-
ative) to a set rules we defined, such as taking an arbitrary
point in a circuit and call it ground. Most mistakes comes
from assuming incorrect ‘concensus’ between engineers or
forgetting your own set of rules. Therefore, it is a good
practice to make clear of what rules you are following and
keep track of their consistency.

3. To be helpful to yourself and other people, try to stick
to some commonly used convention (though it’s grey area)
like using red wire for positive terminal and black wire for
negative terminal. Be flexible if necessary!

4. Topology is NOT changed by stretching and bending,
so regardless of how you extend9 and bend the wires, the
circuit workings remains the same. However, if you discon-
nect a wire or connect it to another joint in the circuit, the
circuit might work differently (e.g. disconnecting a battery
lead turns your walkman off.)

6.2. Series and Parallel Topology

Complicated circuits often have series and parallel ‘sub-
circuits’ in it. It is important to identify them in a topo-
logical point of view.

Series: Not branched10 at any node/point.
Parallel: Branched at a node/point.

Most people find series topolgy trivial, however, parallel
topology is easy too if you cared to find out all possible
branches when you see a ‘parallel’ node.

Exercise. Find total resistance seen from voltage source
(battery) V:

Solution. Tracing every possible branches (or routes) and
bend the circuit in 3D mind, we can redraw the circuit:

9Where electromagnatic problems are not dominant
10split in two or more paths



R = R4//[R1 + R5//(R2 + R3)]

6.3. Voltage, Current and Ground

Due to ambiguity in terminology in electronics literature,
some students get confused when they read verbal circuit
descriptions. I’ll discuss these common misconceptions in
this section.

The other name for voltage is ‘potential difference’ (p.d.).
From kindergarten mathematics, we know that it takes two
number to ‘make a difference’, so as p.d.. The sentence
structure for voltage is:

Vab = “The voltage across A and B”

It is not accurate to say “voltage at node A” alone because
it’s not a finished sentence. The unspoken part of the sen-
tence is “... with respect to the ground ...”.

To save breath describing circuits, people pick a node where
every measurement is taken with respect/reference to. The
node is then called ‘Ground’. So, when we try to express
‘voltage at node’ on circuit diagrams, we must make clear
where the Ground is by drawing a symbol at the reference
node.

Ground is quite an arbitrary notation. Despite the ‘physical
reality’, Ground is always defined to have zero voltage. For
simple circuits with one battery of voltage V+−, most people
call the negative terminal ground (V− = 0), and the positive
terminal have the voltage of the battery (V+).

Confusion about voltage values roots from sloppiness: peo-
ple omit the ground symbol and let readers guess. The bat-
tery example was made clear by:

V+− = V+ − V− = V+ − 0 = V+

For the sake of completeness, the preprosition for current is
‘through’. e.g. ‘Current through node A’

6.4. Mathematical Shortcuts

1. Parallel impedance: most scientific calculator a recipor-
ical button11 so you can calculate parallel impedances by:

R∥ = (R−1
1 + R−1

2 + R−1
3 + ...)

−1 (30)

2. Identical Resistors in Parallel12: Divide one of the iden-
tical resistance by the number of branches give you the com-
bined resistance. Given n branches with resistance R in each
branch, equation (30) can be written as

R∥ = (nR−1)−1 =
R
n

(31)

3. Potential divider: not all teachers share electronic tech-
nician or engineers’ vision about potential dividers. You can
tell if your physics teacher give you this combined formula
immediately when he start potential dividers:

VR2 = V
(

R2

R1 + R2

)
(32)

If everybody have this formula, do you think HKEA will let
you use it directly without intermediate steps? I don’t think
so. Equation (32) is a consequence of the more primitive
form of potential divider:

VR1

VR2

=
R1

R2
(33)

Equation (33) is a more useful and intuitive form. I’ll give
an example for MC Questions (i.e. you can do it very quickly
if you spot nice numbers):

Example 1. Consider a two resistors, R1 = 3Ω and R2 = 6Ω
connected to a 9V battery13. What is the voltage across R2?

In voltage dividers, we only care about the ratio between se-
ries resistors. From equation (33), we know VR1 : VR2 = 3 :
6. However, we have nice numbers14 in this problem. Be-
cause 3+6=9, 9V is shared by two resistors in with 3 parts
to R1 and 6 parts to R2. Trivially, VR2 = 6V

If you ignored the nice numbers, equation (32) might not
slow you down because you’re already too slow. The next
example will show you the full advantage of equation (33).

Example 2. Consider R1 = 3Ω is connected with R2 = 6Ω
in series and the voltage across R2 is 8V, what is the voltage
across R1?

11[1/x] on Casio, and [x−1] in Sharp
12in HKCEE Physics MC
13This problem doesn’t care about the sign in order to save a diagram
14like most MC problems that you thought of as ‘time-consumers’



If you use equation (32), you will end up doing algebra to
break it down to equation (33). Let’s use equation (33):

VR1

8
=

3
6

VR1 = 4

It’s possible to ask for the voltage across both resistors.
Nonetheless, it is still easier to find the voltage across R1
and add to the given voltage.

4. (Generalized) Current Divider Formula: Consider this
circuit with I given and branch currents I1 and I2 to be
found:

People with electrical intuition will see without deriving,

I1 = I
(

R2

R1 + R2

)
(34)

I saw people calculating the parallel branch resistance R∥
for V∥ = IR∥, then have I1 =

V∥
R . They’re actually going

through the derivation15 of my ‘Generealized Current Di-
vider Formula’. At branch b

Ib = I
(

R∥
Rb

)
(35)

Proof. Since all the branches share the same pair of node,

V∥ = VR1 = VR2 = ... = VRb (36)

Using Ohms law,
I∥R∥ = IRb Rb (37)

which is a cleaner form of (35).

For multiple branches, you don’t have to use equation (34)
and cascade them. Use equation (35) with R∥ calculated by
equation (30).

6.5. Kirchoff Laws

[Physics (AL/AS)]

Circuits with multiple sources (voltage or current) and bridges
often cannot be analzyed by simple series-parallel techniques,
therefore a more general approach is needed. KCL and

15With voltage calculated as by-product

KVL are trivial ideas strung into a bunch of simultaneous
equation for you to solve. Signs in KCL and KVL are typi-
cally confusing, and my favorite sign notations are:

1. The point where current start flushing into resistances or
impedances are defined to be +.

2. KCL: left hand side of the equation is is current in, the
right hand side is current out.

Consistently sticking to one set of notations will give you
less chance for errors.

7. AC CIRCUITS

[Physics (AS/AL), Electronics (AS)]

In HKALE Physics and Electronics, you were supposed to
memorize a lot of confusing and messy formula with arctan
and square root of sum of squares, plus stupid rules like
voltage lead current, etc. It’s simply due to Physics com-
munity’s culture to make sense of electric circuits from real
numbers only. Let’s see what electrical engineers do in this
section!

7.1. Complex Impedance

From now on, when dealing with AC circuits, forget the shit
in your textbook (but remember ω = 2π f ) and treat every
capacitor and inductor the same way as you treat resistors.
The painful days of phase vectors diagrams, multiple plots
of sine wave, damn rotating vectors, etc are over16. The
new term for this ‘virtual+reality resistance’ is a complex
number called impedance, denoted by Z:

Zcapacitor =
1

ĵωC
(38)

Zinductor = ĵωL (39)

Relating to reactances in your textbook,

Zcapacitor = − ĵXcapacitor (40)

Zinductor = ĵXinductor (41)

I personally don’t use the term reactance often.

Complex numbers gives amplitude (magnitude) and phase
(argument) information about all quantities in a.c. circuits.
So, everything is in a convenient package for manipulations
like regular algebra.

16I am glad that I went to America before starting a.c. circuits in Form 7



If your knowledge in the real-number version of a.c. cir-
cuits cannot be undone, note that the impedance Z in your
textbook is actually |Z| here. From now on, you can forget
the formula Z =

√
R2 + X2 because it’s just the modulus of

the complex impedance Z, i.e. |Z|. Also, forget tan φ = ωL
R

because φ is actually the argument of Z, i.e. arg(Z).

7.2. Lead or Lag?

Complex impedance also offer a neat alternative to the ques-
tion ‘Why inductors have voltage lead current and capaci-
tors have voltage lagging current?’ After this section, you
won’t have them switched around.

With the complex version of Ohms law

V = IZ (42)

Ph(V) = Ph(I) + Ph(Z) (43)

For RC circuit, Ph(Z) = −90°, so voltage lags current. For
RL circuit, Z = ĵ(ωL), Ph(Z) = +90°, so voltage leads
current. For RLC circuits, compute the Ph(Z) and see if it’s
greater or smaller than 0°.

7.3. Complex Power

You’ve seen P=VI in real form, the complex number version
of power is S, where

S = VrmsIrms (44)

Due to equation (42), the above equation can be rewritten as

S = (IrmsZ)Irms = |Irms|
2Z (45)

Inductors and capacitors contributes only to imaginary com-
ponent of any complex quantity in your calculations. So,
real power is Re(S), and reactive power is Im(S).

7.3.1. Resonance

As we know ideal capacitors and inductors doesn’t dissi-
pate energy17, maximum energy transfer occur when all the
power is dissipated through resistor R. To make it happen,
we want18. the reactive power, Im(S)=0.

On the right hand side of equation (45), only Z is complex.
So, to maximize power dissipated (by resistor R) in a simple
series RLC circuit,

Im(Z) = ωL −
1
ωC
= 0 (46)

17they just store energy
18From inequality (24), max Re(S) = |S|. Illustrated by the right angle

triangle, the only way to achieve this is to make the imaginary component
zero so all the magnitude is dedicated to real component.

After solving, we get the condition for resonance:

ω =
1
√

LC
(47)

7.3.2. Average Power

The equation Pavg = VrmsIrms cos θ in your textbook for av-
erage power dissipated (Tip: ‘dissipated’ always mean re-
sistors only) might lead you to think of dot products. It
isn’t surprising at all because complex numbers and vectors
are related. I don’t recommend secondary school students
to think of it as dot product because it involves geometric
thinking of vector space or ideas in abstract linear algebra.

Writing equation (44), in polar form,

S = |Vrms|e ĵ arg(Vrms)|Irms|e ĵ arg(Irms) (48)

Simplified,

S = |Vrms||Irms|e ĵ[arg(Vrms)−arg(Irms)] (49)

Now we want the real part of S,

Pavg = Re(S) = |Vrms||Irms|Re
{
e ĵ[arg(Vrms)−arg(Irms)]

}
(50)

To save space, we write the phase difference between volt-
age and current as φ, where φ = arg(Vrms) − arg(Irms).

With Euler’s formula (14),

Pavg = Re(S) = |Vrms||Irms|Re(cos φ + ĵ sin φ) (51)

Simplifying,

Pavg = Re(S) = |Vrms||Irms| cos φ (52)

Equation (49) and (50) can be skipped if you think in terms
of De Moivre’s theorem.

As you can see, just by mastering complex numbers, there
are no new concept to assimilate here and no new formulae
to remember.

I recommend Sharp EL-506 series calculators because it can
compute complex numbers and perform many functions not
available on classical Casio models.

8. FUN STUFF

Give a pair of integer values that satisfy: a = ba − (a− b)a−b


